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materials. Part 1. General hydrodynamic equations 

By ALEXANDER GOLDSHTEIN A N D  MICHAEL SHAPIRO? 
Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel 

(Received 1 1  August 1992 and in revised form 5 July 1994) 

Collisional motion of a granular material composed of rough inelastic spheres is 
analysed on the basis of the kinetic Boltzmann-Enskog equation. The Chapman- 
Enskog method for gas kinetic theory is modified to derive the Euler-like 
hydrodynamic equations for a system of moving spheres, possessing constant 
roughness and inelasticity. The solution is obtained by employing a general isotropic 
expression for the singlet distribution function, dependent upon the spatial gradients 
of averaged hydrodynamic properties. This solution form is shown to be appropriate 
for description of rapid shearless motions of granular materials, in particular 
vibrofluidized regimes induced by external vibrations. 

The existence of the hydrodynamic state of evolution of a granular medium, where 
the Euler-like equations are valid, is delineated in terms of the particle roughness, p, 
and restitution, e, coefficients. For perfectly elastic spheres this state is shown to exist 
for all values of particle roughness, i.e. - 1 d /3 < 1. However, for inelastically 
colliding granules the hydrodynamic state exists only when the particle restitution 
coefficient exceeds a certain value e,v) < 1. 

In contrast with the previous results obtained by approximate moment methods, the 
partition of the random-motion kinetic energy of inelastic rough particles between 
rotational and translational modes is shown to be strongly affected by the particle 
restitution coefficient. The effect of increasing inelasticity of particle collisions is to 
redistribute the kinetic energy of their random motion in favour of the rotational 
mode. This is shown to significantly affect the energy partition law, with respect to the 
one prevailing in a gas composed of perfectly elastic spheres of arbitrary roughness. In 
particular, the translational specific heat of a gas composed of inelastically colliding 
(e  = 0.6) granules differs from its value for elastic particles by as much as 55 %. 

It is shown that the hydrodynamic Euler-like equation, describing the transport and 
evolution of the kinetic energy of particle random motion, contains energy sink terms 
of two types (both, however, stemming from the non-conservative nature of particle 
collisions) : (i) the term describing energy losses in incompressibly flowing gas; (ii) the 
terms accounting for kinetic energy loss (or gain) associated with the work of pressure 
forces, leading to gas compression (or expansion). The approximate moment methods 
are shown to yield the Euler-like energy equation with an incorrect energy sink term 
of type (ii), associated with the ‘dense gas effect’. Another sink term of the same type, 
but associated with the energy relaxation process occurring within compressed 
granular gases, was overlooked in all previous studies. 

The speed of sound waves propagating in a granular gas is analysed in the limits of 
low and high granular gas densities. It is shown that the particle collisional properties 
strongly affect the speed of sound in dense granular media. This dependence is 
manifested via the kinetic energy sink terms arising from gas compression. Omission 

t To whom all correspondence should be addressed 
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of the latter terms in the evaluation of the speed of sound results in an error, which in 
the dense granular gas limit is shown to amount to a several-fold factor. 

1. Introduction 
Flows of granular materials are widely met in Nature and in various industrial 

technological processes. Examples are provided by snow and rock avalanches, and 
transport, mixing and screening of bulk materials (e.g. grain, coal, ore, etc.). Motion 
of granular media may occur in several regimes, which can be subdivided into rapid 
and slow flows. The latter flows are characterized by permanent contacts between the 
particles during their motion. In this regime bulk properties of moving granular media 
are controlled by the Coulomb interparticle friction forces. On the other hand, in rapid 
flows partisles interact by fast impacts occurring during their collisions; most of the 
time particles freely fly between successive collisions. Transfer of particle kinetic energy 
and momentum within a rapidly flowing granular medium occurs during these 
collisions, the nature of which governs the effective medium transport properties. 

The behaviour of rapidly flowing granular materials is similar to that of flowing 
liquids or gases, yet there exists a disparity between the motions of bulk materials and 
of a fluid continuum. This disparity pertains to the fundamental difference between the 
interparticle interactions within the former, and molecular interactions within the 
latter medium. Molecules composing liquids and gases interact with each other in a 
conservative manner, without losing their mechanical energy. On the other hand, 
particle impacts within granular media are accompanied by kinetic energy losses, 
associated with inelasticity of collisions and surface roughness. The effect of these 
losses is to increase the particle internal energy, and, hence, their temperature. 
Therefore, a constant source of mechanical energy is needed to sustain the collisional 
regime of a moving granular material. 

Rapid granular flows may be distinguished with respect to the nature of external 
energy sources supplying kinetic energy to the moving particles. These sources include 
(i) gravity force, which, in particular, causes rapid shear flows of granular materials on 
inclined surfaces; (ii) air pressure, which governs particle motion in the processes 
occurring during pneumotransport, in fluidized beds, etc. ; (iii) externally applied 
electric or magnetic fields (e.g. in electro- and magnetofluidized beds) ; (iv) externally 
induced vibrations (e.g. in vibrocrashing, vibroseparation and vibrofluidization 
processes). 

Collisional motion of granular media may be investigated by stochastic analyses of 
an ensemble of identical (in most cases spherical or disk-like) particles, possessing 
specified inelasticity and roughness. These particle properties appear in various 
collisional models employed to describe motion of granular materials by the 
hydrodynamic equations. Effective transport properties required in these equations are 
obtained by various averaging methods. 

Specific studies dealing with stochastic analyses of moving granular materials have 
been concerned with modelling of fluidized (Goldshtik & Kozlov 1973 ; Nigmatullin 
1978), magnetofluidized (Buevich, Sutkin & Tetukhin 1984), and vibrofluidized beds 
(Raskin 1975), and rapid granular flows (Campbell 1990). The latter problem has 
received wide attention in the literature and has been treated by various methods of 
different rigour and complexity. In most studies the flow was assumed one-dimensional 
and particle-air interactions were neglected. The various methods tested on this model 
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problem were also applied to modelling other important types of collisional granular 
motion, including fluidized beds (Homsy, Jackson & Grace 1992). 

The methods used in studying rapid granular flows include (i) physical or 
experimental modelling (Drake 1990), (ii) computer simulations (Campbell & Brennen 
1985; Campbell 1989), and (iii) gas kinetic theory (Jenkins & Savage 1983; Lun et al. 
1984; Jenkins & Richman 1985a, b;  Lun & Savage 1986, 1987; Richman 1989; Lun 
1991). It must be noted, however, that complicated experimental measurements and 
computer simulations may be performed only in simple cases of granular flows. In this 
paper the kinetic theory is applied to modelling the collisional regime of moving 
granular materials. 

Application of the kinetic theory methods to describing the collisional motion of 
granules include elementary theories (Haff 1983) and moment methods (e.g. Lun et al. 
1984; Jenkins & Richman 1985~). Elementary kinetic theories, even in the classical 
cases of simple dilute gases, yield only qualitative results since their accuracy cannot 
be evaluated within the framework of the given method. Additional difficulties arise 
during applications of the elementary kinetic theories to dense gases, where 
dimensionality principles cannot be used for determination of the effective granular gas 
properties (Haff 1983). 

The moment methods are based on transport equations obtained from the 
Boltzmann equation by integrating it with various weight functions (Grad 1949). In 
addition, these methods require ad hoe approximations of the singlet distribution 
function, f, appearing in the Boltzmann equation. Success or failure of these methods, 
thus, essentially depends upon the choice of the form of the singlet distribution 
function. Approximations off used in various studies of granular materials include (i) 
the Grad approximation in terms of Hermittian polynomials (Jenkins & Richman 
1985a, b) and (ii) the Sonine polynomials approximation (Lun 1991), based on known 
solutions for simple gas systems (Chapman & Cowling 1970). In both of the above 
approximations the Maxwell-Boltzmann distribution serves as the leading-order term. 

In most fast shear flows, these approximations of the singlet distribution function 
cannot yield a satisfactory description of the effective properties governing average 
transport of moving granular materials because the latter approximation off leads to 
a stress tensor, possessing equal normal components, which result disagrees with 
experimental measurements and computer simulations (Campbell 1990). In this respect 
we mention the work of Richman (1989), who proposed a more complicated 
approximation off 

Moreover, theoretical solutions, based on the singlet distribution function expressed 
as Hermittian or Sonine polynomial approximations, may be used for description of 
flows characterized by moderate Mach numbers ( M  < 1.851) and small Knudsen 
numbers (Kn $ 1) (Cercignani 1975). This clearly disagrees with the experimental and 
computational results obtained for fast granular flows (e.g. Campbell 1989), which 
show that the shear stress and the granular temperature T prevailing therein are of 
order of the square of the shear rate, i.e. T N O[(T(U, /L) ]~ ,  where (T is the particle radius 
and u,/L is the characteristic value of the velocity gradient. Using the well-known 
estimates a N T1”, h - (T for the speed of sound, a, and the mean free path, A, within 
the agitated dense granular media, one can rewrite the latter result in dimensionless 
form as MKn = O( 1). 

An example of flows which do satisfy the above requirements with respect to the 
Mach the Knudsen numbers is rapid collisional motions induced by external vibrations. 
For these flows the shear pressure is found to be proportional to the share rate 
(Chlenov & Mikhailov 1972; Savage 1988), rather than to the square of the share rate. 



78 A .  Goldshtein and M .  Shapiro 

Applications of vibration to the transport and handling of various bulk materials has 
received wide attention in numerous studies (Chlenov & Mikhailov 1972; Gutman 
1968). 

Can any rapidly moving granular system be described by hydrodynamic equations 
written in terms of pertinent effective transport properties? For molecular gases, such 
a description is valid for sufficiently long times, when inhomogeneities introduced by 
external sources eventually smooth out and the so-called local thermodynamic 
equilibrium prevails. While for molecular gases such a timescale is normally very short, 
this may not be the case in systems composed of coarse granules. For granular systems 
this equilibration process is accompanied by kinetic energy dissipation during particle 
collisions. If the latter dissipation process occurs sufficiently fast, the hydrodynamic 
state may be never reached, i.e. the evolution of such granular systems cannot be 
described by hydrodynamic equations. 

A rigorous theory of the collisional motion of granular materials should determine 
the range of parameters in which the hydrodynamic equations adequately describe 
coarse-scale transport processes in granular media. The critical stage in the derivation 
of the hydrodynamic equations of granular motion is obtaining a true form of the 
singlet distribution function, which fully determines the structure of these equations, 
as well as the transport properties appearing therein. Since the moment methods hinge 
upon a priori assuming the functional form o f f ,  these methods are incapable of 
substantiating the structure of the hydrodynamic equations, or allowing scrutiny of 
their validity range. These shortcomings are inherent to all the moment methods and 
limit their predictive capacity and range of applicability, which should be checked 
either by comparison with experimental data or with the results of computer 
simulations. 

The objectives of this study are (i) to delineate the range of particle collisional 
properties, i.e. inelasticity and roughness, where the hydrodynamic state of the system 
evolution exists, and (ii) to derive the Euler-like hydrodynamic equations for the 
collisional motion of granular materials, using a rigorous mathematical method of the 
Chapman-Enskog type, based on a systematic solution of the Boltzmann equation; 
(iii) to verify the validity of the corresponding equations obtained by approximate 
(moment) kine tic methods. 

One possible application of the Euler-like equations of granular motion is to flows 
induced by external vibrations (Goldshtein et al. 1993, 1994a). This type of flow is 
characterized by the appearance of shock waves, which govern the mechanism 
dominating kinetic energy transformation in flowing granular materials. Application 
of the Euler-like equations of granular motion to the problem of the vibrofluidized 
motion of layers composed of inelastic rough granules is a subject of the forthcoming 
papers of this series (Goldstein et al. 1994a, b). 

2. Kinetic equation of Boltzmann-Enskog type 
2.1. Collisional model and collisional integral 

Consider an ensemble of identical rough spherical particles - granules of diameter v 
with spherically symmetric mass distribution, performing chaotic translational and 
rotational motions in an effectively infinite spatial domain. The particles are assumed 
to be sufficiently heavy that the effect of the drag force (resulting from interactions with 
the surrounding gas) on their motion is negligible. The inertial properties of each 
particle are characterized by its mass m, moment of rotary inertia I ,  or dimensionless 
moment of inertia k = 4Z/mcr2. In particular, for uniform spheres I = 0. 1mc2 and 
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k = 0.4. The dynamic state of any of the above particles is fully described by the 
location of its centre of mass x, and by its linear, mv and angular, lo momenta. In the 
above v,  o are the particle translational and rotational velocities, respectively. 

To complete the definition of the particle ensemble, changes of the dynamic variables 
resulting from particle interactions should be described. Particles are assumed to 
interact with each other only at contact, i.e. during collisions. We will utilize the 
hypothesis of stereomechanic impact (Goldsmith 1960; Lun & Savage 1987), which 
implies that particle impacts occur instantaneously and in such a way that the particle 
relative velocity gil after each collision depends only on their relative velocity, g,, just 
prior to the collision. Lun & Savage (1987) employed an additional assumption that 
vectors g,, and g;, lie in the same plane, i.e. 

(1 a, b) 

Here, k is the unit vector directed from the centre of particle 2 to the centre of 
particle 1 at the moment of collision. Physical considerations (Johnson 1982), and 
experimental data (Goldsmith 1960) show that the normal restitution, or inelasticity 
coefficient, e depends upon the normal component of the impact velocity g21k = g,, - k 
(or uZlk = u,, k ;  see (A 1) in Appendix A), where u,, = u, - v,, and upon the properties 
of the particle material. According to the definitions of properties e, p, given in 
Appendix A, - 1 < p < 1 and 0 < e < 1. 

It should be noted that the above collisional model provides but a simplified 
description of particle impacts. The roughness coefficient, p, generally depends upon 
the surface friction coefficient, as well as upon the normal, gZlk, and the tangential, g217, 
components of the relative impact velocity (Maw, Barber & Fawcett 1981; 
Sondergaard, Chaney & Brennen 1990); i.e. generally, e = e (uzlk), /3 = P ( U , ~ ~ ,  g217). 
The interparticle surface friction coefficient is, however, difficult to measure 
(Sondergaard et al. 1990) and to incorporate in the collision integral (Campbell 1989). 
As an alternative, Jenkins (1992) accounted for elastic deformations associated both 
with normal and tangential displacements of the contact area, thereby employing two 
coefficients of restitution, associated with the corresponding velocity components. 
However, mathematically the tangential coefficient of restitution, introduced by 
Jenkins (1992) coincides with /? employed in the present model, albeit with restriction 

Equations (1 a, b) were employed in classical kinetic theories of dense gases and 
liquids in two limiting cases: (i) e = 1, p = - 1 and (ii) e = 1, p = 1, respectively 
describing perfectly smooth and rough (Chapman & Cowling 1970) spheres. In these 
cases the total kinetic energy of the system is conserved. However, for all other values 
of the coefficients p, e the collisional model (1 a, b) predicts dissipation of the granular 
kinetic energy. 

Collisional models employed in most studies of granular motion are characterized by 
constant parameters e,P. Raskin (1975), Jenkins & Savage (1983), Lun et al. (1984), 
Jenkins & Richman (1985a, b) examined the case of perfectly smooth inelastic spheres 
(p = - 1,0 < e < l), where the tangential velocity components of the impacting 
particles do not change during the collision. The case p = 0, corresponding to the 
situation where maximum kinetic energy is dissipated, has been analysed by computer 
simulations (Campbell 1989; Campbell & Brennen 1985), which found surface friction 
and inelasticity to be sufficiently large to eliminate the postcollisional tangential 
relative velocities. Goldshtik & Kozlov (1973) and Nigmatullin (1978) used a model of 
perfectly rough (p = l), inelastic (e < 1) spheres for describing fluidized bed processes. 
The collisional model (1 a, b) with arbitrary constant parameters e, p was used by 

( k -g i , )  = -e(k.g,,), (k xgi,)  = -P(k xg,,). 

o < p < 1 .  
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Jenkins & Richman (1985b) for disk-like particles, and by Lun & Savage (1987), 
Goldshtein, Poturaev & Shulyak (1990), and Lun (1991) for spheres. 

Lun & Savage (1986) treated the case of smooth spheres with the restitution 
coefficient exponentially dependent on the normal component of the relative particle 
impact velocity. In this section we will consider the collisional model (1 a, b), in which 
both parameters e, /3 arbitrarily depend on the particle relative collisional speed. 

The formalism considered here is subjected to the requirement of the mathematical 
simplicity of the relationship g; ,  = g~,(gZ1) between the relative velocities before and 
after collisions. This means that an inverse function, g,, = gz1(gLl) exists. In addition, 
the following assumptions will be used : 

(i) Statistical expectation values of the particle ensemble may be expressed via the 
singlet distribution function f ,  = f ( x ,  u,, o,, t )  ; pair correlations of each two particles 
may be expressed via the pair distribution function f (')(x,, 7, ; x,, 7* ; t ) ,  where zi = 
( u i , o i ) ,  i = 1,2. 

(ii) The probabilities of triple and multiple collisions are negligible. 
(iii) No external forces act upon the particles. 
It will be shown below that the treatment to be proposed may be generalized to 

include the gravity force, the effect of which is to add the free-fall movement to the 
whole particle ensemble. Non-trivial effects of the gravity force are related to 
interactions between the ensemble (e.g. granular layer) and a solid wall (Goldshtein et 
al. 1994a). 

Based on the above assumptions and using the technique employed in the classical 
kinetic theory (Chapman & Cowling 1970; Condiff, Lu & Dahler 1965), one obtains 
the equation of change for the singlet distribution function f ,  (see Appendix Ct) : 

where the collisional term is given by 

a,f= at ~3u,d3wo,d~kS(k.v, ,)  [ A j @ ) ( x , z ~ ; x + d c , z ; ;  t ) - f (2 ) ( x , z1 ;x - - k , z z ;  t )] ,  (3) 

A = -a(u;, u;, o;, m;)/a(u,, u,, o,, 0,) c-1. (4) 

In the above, the coefficient 2 = 2(u,,,) and the double-primed dynamic variables 
are defined in (A 9), (A 10) in Appendix A, t is the time variable, and S(k.u,,) = 

~ ~ ~ ( k - u , ~ ) 8 ( k - u ~ ~ )  (8 is the Heaviside function, i.e. 8(x) = 0 for x < 0, 8(x) = 1 for 
x > 0). 

Equations (2E(4) are not closed, sine they includefandf"). We will obtain a closing 
relation for the singlet distribution function (Enskog equation) by invoking the 
generally accepted assumption of molecular chaos (see for example McCoy, Sandler & 
Dahle 1966), modified to include the Enskog's frequency factor g(n): 

f ( ' ) [ ~  + ~ k (  1 - A), 7, ; x - Aqk, 7, ; t] = f , [ x  + ck( 1 - A)]f,(x - Ark) g [ x  + gk(i - A)], ( 5 )  

where the dependence of g upon its argument, appearing in (5 ) ,  is implicit, i.e. g = 
g{n[x+gk(:-A)]}. 

t The following appendices are available from authors or the JFM editorial office upon request: 
Appendix C. Conservation Laws. Appendix D. Existence and uniqueness of the hydrodynamic 
solution. Appendix E. Estimation of the Maxwell-Boltzmann approximation. 
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In the above,fi(x) = f ( x ,  zt, t ) ,  A is an arbitrary parameter, and Enskog's frequency 
function g(n) is the equilibrium radial distribution function at contact (Chapman & 
Cowling 1970). This function is independent of particle collisional properties and may 
be calculated, for example, from approximate formulae of Carnahan & Starling (1969). 

Equations (2k(5) constitute Enskog's theory generalized here to the case of 
inelastically colliding rough particles, where the kinetic energy is not conserved owing 
to dissipation. These equations will serve here as modus operandi for derivation of the 
equations governing hydrodynamic properties of the particle ensemble. 

Enskog's model is expected to adequately describe the behaviour of systems 
containing a large number of macroscopic particles in cases where the attractive part of 
their interaction potential (e.g. adhesion forces) may be neglected. This assertion is 
supported by the success of Enskog's theory in describing properties of simple dense 
fluids. In particular, viscosity and thermal conductivity calculated by this theory differ 
from the corresponding quantities measured for hydrogen and argon by less than 15 YO 
(Hanlay, McCarthy & Cohen 1972). A close agreement between the measured 
properties of those calculated with a corresponding choice of the function g,  is also 
found for gas-liquid phase transitions. 

2.2. Laws of conservation 
Multiply both sides of (2) by an arbitrary intensive property $ = @(zJ and integrate 
over the whole range of the variable z, = (u , ,o l ) .  Then, after performing some 
algebraic manipulations (see Appendix C) one obtains the general equation of change 

(6 a)  
a a 
-($) at = -&-J($)+w)? 

with the ensemble average defined by 

($) = sd"7AX, 7, t )  $(7>, (6 b) 

and where I($) and J($) can be identified as the volumetric source term and the flux 
vector of the macroscopic variable (@), respectively. In general, the decomposition 

J($) = J("($) + J'c'($) 

is valid, i.e. the flux of the property $ consists of a kinetic or diffusional part 

J(Y$) = ( U l $ ) ,  (7) 

and a collisional transfer part of the form 

J'"($) - d67, d67, d2k dAS(k* u2,) k A'$f")(x + qk( 1 - A), 71 ; x - Auk, 72 ; t). (8) "S 4 I: 
Here A'$ = A$, - A$, = ($; - $,) - ($; - $2) is the change of the property $ 

associated with 'direct collisions' (see Appendix A for the definition of these events). 
Finally, the source term is given by 

d6Tl d67, d2k S(k* uZ1) A$f ("(x + ak, 71 ; X, T~ ; t ) ,  (9) 
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Formula (9) describes the collisional rate of change of ($). For the model 
investigated here, this expression takes into account transfer of particle kinetic energy 
between their rotational and translational degrees of freedom, and also the total energy 
losses (see (A 6)) .  

Employing (6)  with $ being particle mass, m, linear momentum, mu, and kinetic 
energy of random motion E = :mu2 +:Id, one obtains the following conservation 
equations governing the evolution of these properties : 

aP a a a 
-+--.@u) = 0 ,  -@u,)+-t i j (x ,  t )  = 0,  
at ax at axi 

a a 
at ax 
- [ n e o + ~ p u z ] + - ~ q ( x , f )  = I(E).  

In these equations p = mn is the bulk mass density, u = ( u ) / n  is the bulk velocity 
(the mean particle spin velocity oo = ( o ) / n  = 0) and ne, = ( ~ ~ ~ v - u ~ ~ + ~ I w ~ )  = 
n(e,, + eo,.) is the particle average fluctuation kinetic energy. The momentum flux tii 
consists of macroscopic, pui u,, and microscopic (pressure tensor, pii) parts : 

t i j ( X , f )  = pui uj + P,,(x,f). 

qi(x, t )  = nui(eo + :mu2) + ui pii(x,f) + j i (x , f ) ,  

( 1 0 4  

( 1 0 4  

The expression for the kinetic energy flux, qi, is 

in which the second term accounts for work of pressure forces. 
The kinetic parts of the pressure tensor, PjF) and of the vector heat flux,-$) do not 

depend upon the choice of the collisional model, employed in the derivation of (lOu-c). 
Comparable collisional transfer parts, @,j?), expressed by integral (8) (with 
appropriate choice of $) depend upon the nature of the particle collisions embodied in 
A'$, A$. Using (5 ) ,  P$),jjc) may be expressed via the singlet distribution function 

Pee) = ( ( m u ) ) ,  j( ')  = ( ( ~ ~ ~ v - u ~ ~ + + I w ~ ) ) .  ( 1  1 a, b) 

Here, for any function F the symbol ( ( F ) )  indicates the integral 

1 

Id%, d6T2 d2k I dh S(k.  uZl) kfJx + d( 1 - h)]f2(x - A d )  g[x + d(:- A)] A'F, 

A'(fmCz +$Zwz) = m{(r, -7,) [ (k .  C,), - ( k .  Cl)z] + y2[Cg- C;  

- k *  (0, x C, + 0, x C,)]} +my, ~CT'[[W; -u;- ( ~ . U I , ) '  + (k* t~ , )~ ] ,  ( 1  1 d )  

and Ci = ui-u, i = l , 2 .  
Finally, the source term appearing in (1Oc) is given by 

I (E)  = Icf,f, x) = - d6T1 d67, d2kS(k - u,,) g[n(x + ;ck)]f,(x + ak)f,(x) AE, (1 2)  2 's 
with AE given by (A 6) .  

The conservation equations ( lo ) ,  written in terms of fluxes, possess divergent forms, 
which are convenient for formulating conditions for hydrodynamic quantities upon 
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a shock wave (see $6). For describing continuous (shockless) flows the conservation 
equations are normally expressed via the microscopic parts of the fluxes, i.e. via the 
pressure tensor ej and the heat fluxj: 

McCoy et al. (1966) first derived the conservation equations (13a-c) for granular 
media consisting of absolutely rough elastic spheres. Their expressions for the pressure 
tensor, heat flux vector and volume source term are obtainable from (lOd, e)  by a 
small-gradient expansion of the singlet distribution function f. Lun & Savage (1987) 
generalized the work of McCoy et al. (1966) to the case of arbitrary constants e,P. 
Goldshtein et al. (1990) obtained the conservation equations (13a-c) for the same 
collisional model, but for arbitrary gradients of f. Here, (13a-c) with expressions 
(lOd, e)  are further generalized for a more complicated collisional model (1). 

In order to derive the hydrodynamic equations from (13a-c) it is necessary to 
determine the singlet distribution function and to calculate the appropriate constitutive 
equations for the pressure tensor, the heat flux and the source term. This will be done 
in $ 3  using a variant of the Chapman-Enskog method. 

3. Hydrodynamics of the spatially homogeneous state of a system of rough 
inelastic spheres 

3.1. Solution scheme for  the general collisional model 
The Chapman-Enskog method is based upon physical mechanisms governing 
evolution of a multiparticle system towards the equilibrium state. During this process 
the spatial and temporal dependences of the singlet distribution function f, smooth out 
(Bogoliubov 1948). In the absence of external forces and energy sinks (sources) the 
system subsequently passes the kinetic and the hydrodynamic stages. In the kinetic 
stage f, changes during a period comparable to the mean time to between two successive 
particle collisions (mean free time); and the spatial inhomogeneity off, is characterized 
by a scale comparable to the particle mean free path 1. 

In the hydrodynamic stage of the system evolution f, is characterized by the spatial, 
L, and temporal, t,, length and time scales, where L / t ,  z a, the speed of sound in the 
gas. In the final equilibrium homogeneous state f, is a space- and time-independent 
function. 

The above considerations should be revised before applying them to investigation of 
a system composed of inelastic rough spheres. Since in the latter case particle 
interactions are non-conservative and the particle thermodynamic temperature is not 
included in consideration, the equilibrium state of the system degenerates to the state 
where the kinetic energy of particle random motion is zero. 

In a spatially homogeneous state, characterized by a non-zero fluctuation kinetic 
energy e,, the latter quantity monotonically decreases in time. Therefore, even in the 
hydrodynamic stage of the system evolution (if such a stage exists) the fluctuation 
energy e,, speed of sound a and the singlet distribution function should change during 
the time period of order to. 
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Bearing in mind the above, and in accordance with the basic idea of the 
Chapman-Enskog method (Chapman & Cowling 1970) we assume that after a certain 
characteristic time (which will be discussed later) there ensues a hydrodynamic stage of 
evolution of the system, in which stage its state is completely described by the 
hydrodynamic quantities 

<,At) = c5o(t), Lxt), kJ0S = Mt>,%(t), eo(O>, i = 1,293, 

and the singlet distribution function of the system possesses the form 

Obviously, for the spatially homogeneous state all functions do not depend on the 
spatial variable and, as follows from (1 3 a, b), the average values of the particle number 
density n and velocity u are constants. Consequently, we can express without loss of 
generality that the ' hydrodynamic' solution f ( ' )  of the kinetic equations (2)-(5) 
possesses the form f r )  =f( ')(n,  C,, o,, eo(t)), wherein C, = u, -u denotes the peculiar 
velocity of translation (Chapman & Cowling 1970). 

In the spatially homogeneous state the kinetic equation (2) and the collisional term 
( 3 ) ,  combined with the molecular chaos assumption (9, adopt the forms 

J(f(O),f(')) = g(n) k67, d2kS(k. u2,) [Af(O)(zY, t)f(O)(zI, t )  -f(O)(z,, t)f(O)(z,, t)]. (16) 

The solution ff" of (15) depends upon several quantities which possess the 
dimensionality of velocity, namely (e0/m)li2, and parameters c j ( j  = 1,2, . . . , n), 
characterizing the dependence of the collisional properties e, p upon the relative 
particle impact velocity g2,. Experimental correlations (Goldsmith 1960) show that e 
is a decreasing function of uZlk = g2,-k. In particular, for small velocities (uZlk < 
0.06 m s-'), e may be approximated by e z 1 -cl uZlk (Goldsmith 1960). With 
increasing velocity uZlk the slopes of the curves e = e(uZlk) decrease. 

Imposing, so far, no limitations on the precise form of the functions e = e(u21k), 
/3 = /3(uZIk, g217), we will use dimensionality considerations to look for a solution in the 
formff" = n(mZ)3/2 eo3 F( V,, a,, eJ, j  = 1,2, . . . , n, where the non-dimensional function 
Fdepends upon the scaled velocities V,  = Cl(m/eo)1'2, d, = ol(Z/eo)1/2 and parameters 
ej = cj(m/eo)1'2. Finally, assuming that f ( ' )  is isotropic in the velocity space p1 = 

(V, ,  a,) (see a discussion of this matter in §3.2), one can find the singlet distribution 
function in the form 

where 4 = F( Vt ,  Q;, e:, . . . , ei), i = 1,2, and the time dependence of f;') is implicitly 
embodied in e, = eo(t). 

Introduce (17) into (13c) to obtain the equation governing the evolution of the 
kinetic energy of particle random motion due to the dissipation process : 

de, = K(F, (lm1/2)-1 e:/2 I(o)g(o))/n. (18) dt 
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Here 1 = (2gn)-l  is an analogue of the particle mean free path in dense gases, and 

d6p2 d2k8(k* V,,)(k. V,,) 4 4 AE, 

where V,, = V,- V ,  is the dimensionless relative translational impact velocity. 

one can find the equation for F in the form 
Introducing (1 7) for fy), i = 1,2 in (1 5 )  and using collisional integral (1 6) and (1 8), 

where a F ,  F )  = J(')(F, F) / [az(m/e , ) '~~  (mi)3iz ei6 g(n)] 

is the collisional integral (16) in non-dimensional form. Normalization conditions for 
F are 

which may be obtained from the definition (6 b) of the basic hydrodynamic quantities 
via the distribution function and using the employed solution (17). 

As a result of the self-similar solution (17), equation (1 5 )  adopts the form (20), which 
explicitly does not contain time t. The solution F of (20) depends upon the absolute 
values of velocities V,, 52, (rather than upon the vectors V,, a,) and parameters cj. This 
solution satisfying the normalization conditions (2 1) together with the cj-dependent 
function K(F,F) calculated from (19), may be substituted into (18). This will yield the 
dependence of the right-hand side of (18) upon e,. As a result, (18) reduces to a form 
enabling calculation of the temporal evolution of e, for the selected particle collisional 
model. In the particular case e, p = const one obtains that K(F,F) = const 
(independent of e,), in which case e,(t) will be obtained in the following section. 

3.2. Hydrodynamic stage of system evolution for  smooth sphere model 

Equations (1 7t(21) govern the hydrodynamic, spatially homogeneous state of a 
system composed of inelastic rough spheres. In this section we will investigate such a 
state of an agitated granular medium in the case /3 = - 1, e = const. In this case 
particle rotational degrees of freedom degenerate and do not affect the hydrodynamic 
state. Therefore, equations governing the singlet distribution function for a smooth 
sphere system cannot be directly obtained from the comparable equations (17t(21) by 
passing in the latter to the limit p+- 1. Therefore, we will start the treatment by 
modifying the collisional integral (16) appearing in (15). In this case the singlet 
distribution functionf(0) does not depend upon particle angular velocity and collisional 
parameters ci. 

Combining solution (17), an appropriately simplified collisional integral (16), and 
noting that A = l/e2, one obtains 

1 s e 
JCf('), f ( O ) )  = g(n) d3v, d2kS(k- u,,) [Yf  (O)(u;, t ) f  (O)(u;, t)- f (O)(u,, t ) f(0)(uz,  t ) ] ,  (22) 

fi ( 0 )  - - ( e0 /m)3 /2  F ,  a l$, = F(Vi,e), i = 1,2. 
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Introducing (23 a) into (1 3 c )  one obtains (1 8) with K(F, F) = K,(F, F) given by 
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It follows from (23 b) that 4 depends upon time only via Vt ,  and that Ke(F, F )  is time 
independent (depends only on parameter e). Therefore, the solution of the kinetic 
energy balance equation (18) with K,(F, F )  given by (24) may be immediately 
calculated : 

Here, eoo = eo(0), the timescale 8 of energy decay is given by 

8 = - (2to)/Ke(F, F) ,  (26) 
and to = (e,,o/wz-l’zl is the time comparable to the mean free time in the granular 
system. When the coefficient of restitution e is close to unity, K,(F, F )  4 1, and the 
above two characteristic times significantly differ. 

One can see that the long-time decay of the particle random motion energy in the 
spatially homogeneous case is given by t-’. This time dependence of e, was obtained 
by Raskin (1975) and Huff (1983), without, however, revealing the dependence of the 
dissipation process upon the restitution coefficient e. For this purpose it is necessary to 
evaluate K,(F, F )  and, subsequently, the function F. The equation for calculating the 
latter function is derived by substituting (23a) into (15) with the collisional integral 
given by (22). Introducing (23a) forf:’) into (15) and using (22) together with (18), one 
obtains the equation for F (cf. (20)) 

wherein K,(F, F )  is given by (24) and 

. f (F,F)  = d3v,d2k0(k. V,,)(k* V,,) s 
Normalization condition (21) for the particular case of smooth particles (p = - l), 

considered now, adopts the form 

J d 3 K 4  = g d 3 K  V f 4  = 1. (29) 

Equation (29) constitutes the necessary and sufficient condition for the solubility of 
the integro-differential equation (27) with q F ,  F )  given by (28). A proof of the latter 
property together with the existence and uniqueness of the solution F is available from 
the authors upon request to interested readers. 

For investigating the dependence of K,(F, F )  upon the restitution parameter e, it is 
necessary to solve (27)-(29) for F, which will be done in the following section by 
expanding it in series of the Sonine polynomials, together with investigation of the 
series convergence (see also Condiff et al. 1965). 

It must be finally noted that solution (17) was obtained by a priori assuming 4 to be 
an isotropic function. However, the latter assumption is7 in fact, unnecessary since the 
isotropy of 4 and, hence,f:O) may be derived from the isotropy of the operator JCf(O), 

f ( O ) )  (see (22)) by using (23a) and (15) together with the arguments summarized in 
Appendix D. 
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3.3. Solution for  F by Sonine polynomials expansion 
Here we will evaluate the effect of restitution coefficient e on the singlet distribution 
function of a system of perfectly smooth spheres. Towards this goal expand function 
4 in a series in terms of Sonine polynomials 

m 

4 = FT) C a,Si;L(F:), F: = e / a t ,  (30) 
i = O  

where a, are dimensionless functions of parameter e, FY) is the Maxwell-Boltzmann 
function 

FY)  = ( ~ c a ~ ) - ~ / ~  exp (- V?/a,), 

and Sg)(x)  are the Sonine polynomials 

S g ) ( x )  = (n!)-' ex dn(e-zxm+n)/dxn, 

normalized in such a way that 

Here at = 4/3 ,  T(x) is the Gamma function and is the Kronecker delta. After 
introducing series (30) into condition (29) and using normalization conditions (3 1 )  
imposed on S:)(x), one obtains the first two coefficients of (30): 

a, = 1 ,  a, = 0. (32) 
Other coefficients in expansion (30) may be found after employing the calculational 

scheme of the moment method (see e.g. Condiff et al. 1965), which will here be modified 
to the present nonlinear case. Towards this goal we will suppose, subject to a posteriori 
verification, that a8 4 1 ( i  = 1,2,3,. . .) and, hence, a,aj 4 aj ( j  = 1,2,. . .). Limiting 
ourselves by one more approximation term in (30), following the Maxwell-Boltzmann 
term, we obtain 

16(1 -e)(l-2e2) 
64+(l-e)[(1+e2)190+147] 

a, = (33) 

Direct evaluation shows that lazl d 0.04 for all values of parameter e and, 
consequently, the above assumption of smallness of a, is quantitatively substantiated. 
Details of calculations of (33) are available from the authors upon request for 
interested readers. 

Substitution of expansion (30) with a,, a, and a, given by (32) and (33) into (24) 
yields 

This approximation differs from the comparable lower-order approximation by the 
Maxwell-Boltzmann function (obtained from (30) with a, = 0) by less than 1 YO. This 
means that the Euler-like equations governing the motion of a medium composed of 
inelastic smooth granules (Jenkins & Richman 1985a) are practically exact in the whole 
range of existence of the hydrodynamic solution. 

The difference between the singlet distribution function f (O) and the Maxwell- 
Boltzmann formula produces only a weak effect on the hydrodynamic equation (1 8) 
of medium consisting of inelastic smooth granules. Bearing in mind the surprising 
accuracy of this lowest-order approximation of f ( O )  and the uniqueness of the 
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hydrodynamic solution for E 4 1 one can expect that such a solution for systems 
composed of rough inelastic granules exists and is unique also in a wider range of e. 
Limitations which should be imposed upon the applicability range of the hydrodynamic 
solution may be obtained by studying its stability. 

3.4. Rate of approach of a granular system to the hydrodynamic state and its stability 
Here we will investigate the temporal approach of any solution of the Boltzmann 
equation (19 ,  (22) towards the hydrodynamic solutionf'O) for the system of smooth 
inelastic spherical particles. For classical gaseous systems (e = 1) this question was 
studied for the linearized Boltzmann equation (see e.g. Cercignani 1975). 

Let at t = 0 the above particle system be characterized by the distribution f = 
f(O)'(l +h), slightly deviating by a small function h (lhl < 1) from the hydrodynamic 
homogeneous solution f(O) of (15). Then one can obtain the following equation 
governing the evolution of h : 

where J( f (O), f (O'h) is the linearized collision operator (22). This linear equation 
possesses a self-similar solution (cf. the hydrodynamic solution (23 a) for f (O)): 

h(t, Vi,e) = (2 f  - Hi, Hi = H(Vi,e), i = 1,2, 

-K,(F,F) (i+y)F,Hl+Hl P ' fy+$4 a4 V;- "ll = J(F,FH), (37) [ av1 a Vl 

(36) 

where y is an e-dependent function to be determined below. Substituting (36) into (35) 
and using (25) for eo(t), one obtains the following eigenvalue problem: 

with the operator fdefined in (28). 
Depending on the sign of the real part of the leading eigenvalue y, the function h will 

either decay (when Re (y)  < 0) or grow (when Re ( y )  > 0) with time. In the latter case 
the hydrodynamic solution is unstable and does not possess physical significance. 

The sign of the real part of y may be determined in the case of slightly inelastic 
collisions. Then, in the leading-order approximation (with respect to E = 1 -e 4 1) 
analyses of (37) reduce to the following eigenvalue problem, posed for the linearized 
collision operator J(F(O), F'O'H) l e = l  governing the system of smooth elastic spheres: 

(38) 
where h = - K(F, F )  y. 

Equation (38) possesses five eigensolutions H( Vl) = (1, V,, V;},  each corresponding 
to h = 0. All other values of h are negative (see e.g. see Cercignani 1975). This result 
combined with (34) and the above expression for A, yields for any h < 0 

AFT) HI  = f(F(O), F'O'H) I e = l ,  

y = -h/K(F, F )  % h13.86~ < 0. (39) 

Passing in formulae (39), (36) (with eo(t) given by (25), (26)) to the limit s+O, one 
obtains that h decays exponentially with time, which reproduces the known classical 
exponential approach of any state to the equilibrium for a gas of smooth elastic 
spheres. 

It may be expected that the above considerations are applicable to more general 
circumstances (extending beyond the case E 4 1). This assertion is supported by the 
extensive and successful use of the hydrodynamic equations in situations for which the 
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existence of hydrodynamic solutions was not proven. Additional support for the 
possibility of employing the hydrodynamic equations is provided by a relatively weak 
effect of inelasticity on the form of the singlet distribution function. 

Physically, instability of the hydrodynamic state of the system of smooth inelastic 
spheres is explained by two competitive processes: (i) energy relaxation, which is 
kinetic energy exchange between different degrees of freedom, and (ii) dissipation, 
caused by the energy losses resulting from the particles' collisions. For particles close to 
absolutely elastic spheres the energy relaxation rate, yr, exceeds the dissipation rate, yd. 
With increasing inelasticity yr  decreases and yd increases and for absolutely inelastic 
particles (e = 0) yr < yd. It is clear, that there exists a certain value of e, say em, such 
that for e < em the relaxation process will not terminate and the evolution of the 
granular system will not be solely determined by the mean granular kinetic energy 
(temperature) and, hence, will not be hydrodynamic. 

Particle roughness generally increased the number of degrees of freedom participating 
in the energy exchange process. Therefore, this property causes retardation of the 
relaxation process on the one hand, and accelerates energy dissipation on the other. 
Hence, in a system of rough inelastic spheres em should decrease with increasing 
roughness, which accords with the results of $3.5 [see (54a) below]. 

3.5. Partition of granular fluctuation kinetic energy 

Partition of kinetic energy in gaseous systems composed of complex molecules 
(possessing many degrees of freedom) is usually analysed using models of rough and 
smooth loaded spheres, spherical cylinders and ellipsoids (see e.g. Theodosopulu & 
Dahler, 1974). These models predict equal partition of particle kinetic energy between 
their translational and rotational degrees of freedom. In spite of the difference between 
the non-conservative interactions of macroscopic granules and the conservative 
interactions of gaseous molecules, the assumption of equipartition of kinetic energy is 
used in the statistical models developed for fluidized (Goldshtik & Kozlov 1973; 
Nigmatullin 1978) and magnetofluidized (Buevich et al. 1985) beds. 

Partition of particle fluctuation kinetic energy in granular systems has been 
examined on an ad hoc basis in the particular case of a steady Couette flow of disks 
(Jenkins & Richman 19856) and spheres (Lun & Savage 1987; Lun 1991). It was shown 
that kinetic energy partition in such systems depends only upon particle roughness and 
does not depend on the inelasticity of their collisions. We will investigate the partition 
of fluctuation energy on the basis of a rigorous analysis of the kinetic equation (1 5) for 
the collisional model characterized by constant e, p. In this case ei = 0 and (20) adopts 

(40) 
the form 

(41) 

a4 1 ( av1 af21 

a4 -K(F,F)  34+--,v;+--,f2; = &F,F), 

&F, F )  = d6p, d2k(k. uzl) 8(k. vZl) [(e/3-2 F: F i  - E; 41 s where 

is the dimensionless collisional integral and operator K(F, F )  is calculated by 
introducing (A 6 )  in (19) and subsequent integration with respect to vector k: 

with ql, qz given by (A 5). 
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Equations (40)-(42) together with normalization conditions (21) were first derived 
by Goldshtein et al. (1990). We go beyond the latter study and analyse these equations 
for the case of arbitrary rough spheres. In this case the solution of (40) (similarly to the 
procedure employed for solution of (27)) will be sought in the form of expansion in the 
series of the Sonine polynomials, i.e. 

where aij, at, a, are dimensionless coefficients, dependent upon e, p, and k = 41/rncr2. 
Parameters a,, a, are subjected to the following normalization condition : 

a, + a, = 3, (44) 

assuring the proper behaviour of the energy partition in the limiting cases e = IPI = 1 
(Chapman & Cowling 1970). 

Combination of (43) and normalization conditions (2 l), (44) yields 

a,, = 1, a,, = a,, = 0. (45) 

After satisfying the normalization condition (44), one obtains the first term in (43) 
in the form of the Maxwell-Boltzmann distribution with parameters a,, a,, governing 
granular kinetic translational, and rotational, r, temperatures : 

(46) T - l  , - 2eo a,, T, = feo a,, T +  T, = gee. 
It follows from (46), that fa, and fa, may be interpreted as the respective 

translational and rotational constant-pressure specific heats. 
Definitions of translational and rotational kinetic energy temperatures, given by 

(17), (43), (46) are natural generalizations of comparable definitions employed in 
conservative systems to the case of dissipative granular systems. Physically it is clear 
that these generalizations are justifiable when the energy relaxation rate due to kinetic 
energy transfer between the translational and rotational modes is larger than the energy 
decay rate due to kinetic energy dissipation. In the opposite case the energy exchange 
between the two modes is effectively ‘frozen’, occurring, as it does, much slower than 
the processes of evolution of hydrodynamic quantities. Mathematically this may be 
manifested by the fact that the relative contribution of the first term (Maxwell- 
Boltzmann distribution) of (43) is of the same order as the contributions of the 
subsequent ‘ higher-order ’ terms. Alternatively, in the frozen energy exchange case the 
translational and rotational constant pressure specific heats a,, a, may exhibit 
physically unplausible functional dependences of e and /3 (e.g. at,a, may obtain 
negative values). However, bearing in mind fast convergence of (48) in the particular 
case of smooth spheres, as will not examine the higher-order terms in (43) and will limit 
ourselves by the Maxwell-Boltzmann approximation of function F also in a more 
general case of rough spheres. 

Equation (40) possesses several useful properties, which will prove helpful in finding 
its solutions. Upon multiplication of both sides of (40) by the summational invariants 
of a perfectly elastic rough sphere system, i.e. 1, V,  XV; +Of) and integration over the 
velocity space, this equation turns into identity. Therefore, the solution of this equation 
satisfying momenta1 relationships up to the second order must include only the first 
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FIGURE 1. The dependence of the partition coefficient, a,, upon the particle roughness p and 
inelasticity e for k = 0.4 (uniform spheres). The upper broken line is from Lun & Savage (1987), 
0 < e < 1 ,  (equation (48c)). The dotted line e = em@) describes the range of validity of the 
hydrodynamic solution. The applicability range of each curve (marked by straight lines) is to the right 
of the corresponding vertical arrow. 

term in expansion (43). Calculating any one of the second-order moments V: or Q:, 
one obtains the following relationship between parameters a,, a, : 

(47 4 aa, a, = $(a, - aJ, 

where 
1-k 

a = (1 -/32)-- 
l+k 

Equations (44), (47a) may be replaced by a single quadratic equation, governing 
either of parameters a,, a,. The solution for this equation is subjected to the following 
physical condition : for absolutely elastic spheres (e = 1) the kinetic translational 
temperature exceeds the rotational temperature (q > T,). From this requirement one 
obtains 

Expression (48a) for a, may be compared with the formula 

derived by Lun & Savage (1987) and Lun (1991) for k = 0.4. In contrast with the latter 
studies, in the present model the kinetic temperatures were found to depend not only 
upon the roughness of granules but also upon their inelasticity. 

Figure 1 depicts the dependence of a, upon the roughness /3 for several values of the 
inelasticity parameter e. For e = 1 the difference between the present results and (48 c) 
does not exceed 13 %. However, for decreasing inelasticity the partition coefficient 
exhibits a strong dependence on e, especially for almost smooth particles (p close to 
- 1). In particular, for e = 0.6, and intermediate values of the roughness coefficients 
(j3 = - 0.1) a, predicted by (48 c) is overestimated by as much as 55 %. This error is 
indeed very large since it is comparable to the overall effect of /3 on a, within the whole 
range of the roughness parameter. 
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Coefficients a,, a, are found to be monotonic functions of inelasticity (see figure 1). 
However, these parameters exhibit nonmonotonic /3-dependences. Parameter or, reaches 
maximum on the curve 

2k 1 -k ljZ 

(l+k 'm) ' 

e = e,(/3) = -- (49 a> 

The non-monotonic character of the /3-dependence of a, may be explained by the 
following qualitative considerations. Observe from (A 6) that the translational kinetic 
energy loss (AEJdiss in a particle collision is independent of /3. However, the 
comparable rotational kinetic energy loss (AEr)diss K (1 -p2), and hence increases with 
/3 increasing from - 1 to 0. Assume that at t = 0 the kinetic energies of the rotational 
and the translational modes are of the same order, E, - E,. Then for almost perfectly 
smooth ( B  2 - 1) but inelastic (e = e* < 1) particles E, decreases with time much more 
rapidly than E,. Since for such particles the average kinetic energy exchanged between 
the rotational and translational modes, (AQeZCh, is very small, the total kinetic energy 
rapidly redistributes in favour of the rotational modes. With p increasing from /3 2 - 1 
to /3 N 0 (and e = e* = const), one obtains that (AE,)diss K (1 -Bz) increases, while 
(AEJdiss cc (1 - e2) (see (A 6) )  and, hence, remains constant. Therefore with 
increasing /3, E, (or, equivalently, a,) decreases and Et (or a,) increases, in accordance 
with the trend observed in figure 1. With /3 further increasing from 0, (AE,)diss 
decreases, which tends to increase E,. However, increases with increasing /3, 
which leads to a more equal partition of the kinetic energy. These two competitive 
tendencies result in a weak /3-dependence of a,, which is clearly seen in figure 1. 

Since the above considerations have a qualitative nature, the maximum of a, 
(minimum of or,) occurs at a certain roughness /3 = /3,(e), which differs from zero. We 
will estimate /3,(e) directly from the collisional model. Assume that ort reaches 
maximum when (AEr)diss = (AEJdiSs, or (see (A 6)) 

Assuming further, than on average gilk .% gi17, one obtains 

Taking the negative root of the above expression and expanding it in a series for 
(1 -ez )  4 1, one obtains 

1-k l+k 
/3,(e) = =-e2-  2k ' 

Comparing the above expression with (54a), rewritten in the form 

l+k e2-  Pm(e> = -- 
2k 
1-k 1-k' (49 b) 

one can conclude that both formulae predict shifting of the maximum value /I, 
towards /3 = - 1, with increasing e. 

In the limiting case of absolutely smooth spheres, /3 = - 1 there is no kinetic energy 
exchange between the translational and rotational degrees of freedom. This means, 
that the behaviour of the system composed of such particles is independent of the value 
of E,, which will be explicitly and implicitly absent in the hydrodynamic equations. 
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This means that the rotational temperature, i.e. the kinetic energy participating in the 
energy exchange process, T, = 0, which implies a, = 0. On the other hand, our model 
yields a, = $. The inability of the present model to reproduce the above limiting results 
constitutes its defect, which should be resolved in the framework of a more elaborated 
model of particle collisions (Jenkins 1992). 

The effect of increasing particle inelasticity (1 - e) is to increase the kinetic energy, 
(AEJdiS8, lost in each collision by the translational degrees of freedom. As a result, the 
granular temperature is redistributed in favour of the rotational modes (see figure 1). 

The properties of the partition parameters at, a7, discussed above, need experimental 
verification as well as further theoretical investigation based on more elaborated 
collisional models (e.g. the model described by (l), which includes the dependences of 
coefficients e,/3 upon the particles’ relative impact velocity g2J. Such a study lies 
beyond the scope of this work; however, it may be performed by the calculational 
method developed above. 

3.6. Range of existence of the hydrodynamic solution 
The process of temporal evolution of a system of rough inelastic spheres to the 
hydrodynamic state is characterized by a timescale t,, in which the system achieves the 
‘equilibrium’ energy partition, given by (48a, 3). It is obvious that this time is inversely 
proportional to the kinetic energy, (AE)ezeh, exchanged between the different modes 
during each collision. The latter energy is larger for rougher particles and smaller for 
smoother ones. In particular, for /3+- 1 t ,  is large and may significantly exceed the 
characteristic time t ,  of the kinetic energy decay due to the dissipation process. 
Mathematically this is manifested by a decrease of q (and, hence, a,) with decreasing 
/3. That is, for those parts of the curves a,(e,/3), where at decreases with decreasing 
/3(p < p,), plotted as broken lines in figure 1, no hydrodynamic solution exists. In 
further treatment we will consider only the range of parameters /3 > p,, or e > em@), 
with em@) given by (49 a), where the present hydrodynamic solution exists and 
possesses physical significance. The dependence (49a) is shown in figure 1 and may be 
used to graphically determine the range of applicability of any of a,(e,/3) curves. 

It must be noted that existence of the hydrodynamic solution for granular systems 
was discussed (Jenkins & Richman 19853; Lun 1991) in terms of small inelasticity, 
1 -e < 1. These qualitative estimates are quantitatively scrutinized here by our 
determination of the range of existence of the hydrodynamic solution in the (e,p)- 
plane. 

For the collisional model employed here the proposed hydrodynamic solution (17) 
depends only on the total energy of random motion. This assumption automatically 
implies that the translational and rotational kinetic fluctuation energies (e,,, e,,) and 
temperatures ( q, T,) depend on time according to the formula 

with K(F, F )  obtained in accordance with (42) and the Maxwell-Boltzmann 
approximation of function F (see (43)) : 

This quantity may be used for evaluating the accuracy of the hydrodynamic solution 
f y )  which may be performed similarly to the case of smooth spheres, considered in 
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$3.4. It is further shown that K(F, P) characterizing the decay rate of the kinetic energy 
of the particle random motion also governs the intensity of the zero-order volumetric 
sink term, appearing in the Euler-like energy equation (see (79c, d)). 

The approximate solution for the singlet distribution function, given by the first term 
of (48), satisfies all momenta1 relationships (or their combinations) up to the second 
order. Therefore, consideration of other energy balance laws (separate for each mode, 
etc.) will not provide any new insight. Bearing in mind the above observation and 
assuming sufficiently fast convergence of expansion (43), we will further limit ourselves 
by the accepted Maxwell-Boltzmann approximation of the hydrodynamic solution for 

Now it is possible to calculate the dependence of the isotropic, collisional part, Pee) 
of the pressure tensor upon the density and the energy e, in the spatially homogeneous 
state. This may be done by substituting the Maxwell-Boltzmann approximation (17), 
(43) for f f "  with coefficients a, b,a,,a, given by (47b, c), (48a,b) into (1  1 a )  and 
neglecting the spatial non-locality (expressed by the terms including ak) in all 
integrand functions. The above function P(')(e,, n)  will be evaluated in the following 
section by the Chapman-Enskog method, which will also systematically give the 
higher-order contributions to P(') with respect to gradients of the hydrodynamic 
properties. 

f (0 ) .  

4. Derivation of the Euler-like equations for a moving granular medium 
by the Chapman-Enskog method 

4.1, Solution scheme 
Consider the kineti stage of evolution of a system composed of rough inelastic spheres. 
In this stage the system state is determined by the singlet distribution functionf, =Ax, 
ul, a,, t),  which obeys the equation 

obtained from (2) by invoking the molecular chaos hypothesis (5). Using (3) for the 
collisional integral combined with (4), evaluated for the collisional model chosen here 
as A = e-'/P (Goldshtein et al. 1990), one can rewrite the right-hand side (52) in the 
form 

J ( f , f ,  x) = d6r, d2kS(k- u2,) [(e/3-2 g(x + t ak ) f : (x ) f i (x  + ak) 
-Ax - ; a ~ > f l ( X ) f , ( x  - 4 1 .  (53) 

s 
We assume that after a certain period the system reaches the hydrodynamic 

evolution stage, where its state is weakly inhomogeneous and completely described by 
the first five moments Q(x, t ) ,  appearing in the right-hand side of (14), of the singlet 
distribution function. This means that the gradients of the hydrodynamic quantities 
obey the following estimates : 

anQ(x, t)laxn - p ,  6 4 1, (54) 
where q5 - L-l, with L being a characteristic sale of inhomogeneities existing within 
the system. 

We will apply the Chapman-Enskog method to systematically construct the solution 
for (52), (53). Specifically, we will derive the dependences of the hydrodynamic fluxes 
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upon the corresponding properties in the zero- and first-order approximations with 
respect to the spatial gradients of Q(x, t). 

Classical applications of the Chapman-Enskog method to gaseous systems involve 
expansions in terms of a small parameter Kn = l / L ,  where 1 is the particle (molecule) 
mean free path. An appropriate non-dimensional form of (52) involves the 
characteristic timescale L/a, where a is the speed of sound in gaseous systems. In the 
dense granular media considered here, a strongly depends upon the density n and hence 
may not serve to define the above-mentioned dimensionless parameters. Therefore, we 
will apply the Chapman-Enskog method to (52) and (53) in their dimensional forms, 
noting that it leads to results identical to those obtained after non-dimensionalizing of 
these equations. 

In accordance with the basic idea of the Chapman-Enskog method, the singlet 
distribution function is represented as a powers series in $: 

(55)  
where f ( % )  = O($%), n = 0,1,. . . , and all functions c,(x, t )  = (n(x ,  t),  u(x, t), eo(x, t)} = 

O(1). 

f, =f(v1,o1, C A X ,  0) = f Y '  +f?' + W2), 

The above implies the following normalization conditions imposed on f ( % )  : 

d6rl f Y' = n, b a r l  v,f$'" = nu, 6r1 olfy) = 0, (56a-c) s sd 
J ~ r ~ j - ( o ) ~ ~ ~ v ,  - u12 m ++1w21= ne,, ( 5 6 4  

d6rlfy) = d6rlfF) u1 = d6r f ( l ) ~ ,  = d6rlfy) 1 v -uI2+- = 0. (57) 

Strictly speaking, hydrodynamic solution (55)  with normalization conditions (56) 
and (57) corresponds to flows which are free of externally imposed torques. For 
obtaining a more general theory, accounting for the latter quantities, in (55k(57)  one 
should replace o by o - oo, where oo is the mean particle spin. One may assume that 
o, is equal to the fluid angular velocity, i.e. oo = :rot u, which is accurate up to small 
values of the second order with respect to the gradients of hydrodynamic quantities 
(Chapman & Cowling 1970; McCoy et al. 1966). Accounting for the particle spin does 
not change the form of the Euler-like hydrodynamic equation for flowing granular 
media (Goldshtein et al. 1990). 

It follows from the assumptions (14), (54), that f ? )  appearing in (55) may be 
represented as a linear combination of the gradients of the hydrodynamic properties Q, 
the exact form of which combination will be determined below. Smallness of the 
gradients of CJx, t),f[o,, a,, Q ( x ,  t)] can be used for expanding the expressions for the 
pressure tensor p,j ,  the heat fluxj, the sink term I, and the collisional integral J in series 
with respect to small parameter $: 

s s  s l 1  s [zl "I 2m 

pii = P$)cf(O)) + P p ( f ( 0 ) )  + P$)cf(l)) + . . . , 
j = j ( O ) ( f ( O ) )  +j(l'(f'O') +j(l)(f(l)) + . . . , 

= Z ( O ) ( f ( O ) )  + Z ( l ) ( f ( O ) )  + Z(l)cf(l)) + ..., 

(58 a)  
(58 b)  
(58 c) 
(58 4 

Here superscript (0), ( l ) ,  etc. denote the orders with respect to $. In particular, 
P$)(f(O)) is the first-order contribution to the stress tensor, arising from the zero-order 
term in expansion (55) for the singlet distribution function f. The second terms in 

Jcf,,f, x )  = J(O)Cf(O),f(O)) + J(l)(f(O),f(O)) + J(l)Cf(O),f(l)) + . . . . 



96 A .  Goldshtein and M .  Shapiro 

the right-hand sides of (58) appear due to non-local effects arising from the first-order 
corrections tof(see e.g. (53)), and the comparable third terms are due to the local 
effects, arising from the first-order corrections to f. 

Introducing expansions (58a-c) into (13), and omitting terms of O(qY), n > 1, one 
obtains the hydrodynamic equations of the Euler type 

1 
+ ; [ Z ( O ) ( J ' ( O ) )  + Z ( l ) C f ( O ) )  +PCf'l ')].  (59c) 

Unlike the classical Chapman-Enskog solution, in the present case of rough inelastic 
granular gas, the zero-order (Euler-like) equations are determined not only by the zero- 
order function f ( O )  but also byf'l), which was overlooked in previous studies (Jenkins 
& Richman 19853; Lun & Savage 1987; Lun 1991). In contrast to the usual Euler 
equation, the kinetic energy transport equation (59c) includes a sink term, the structure 
of which is determined by f(O) and f(l). 

Equations governing f('), f(l). Equations (59a-c) may be used to expand the time 
derivative of the singlet distribution function f, in the series 

The spatial gradient of fy) may be expressed via the comparable gradients of 
hydrodynamic properties Q 

Introducing (60a, b) together with (%a-d) into (52), one obtains the equations 
governing f ( O )  and f(l) : 

p ( f ( 0 ) )  affi") 
(61) -- - JCf(o),f(o)), 

n ae, 

Solution of (62) requires knowledge of fy), explicitly appearing therein. Therefore, 
we will first solve (61) forfy), which will be done in the following subsection. 

4.2. Contributions of the zero-order function to the hydrodynamic equations 

According to its definition,f(') is independent of spatial gradients of the hydrodynamic 
properties. Therefore, solution of (62) subject to the normalization condition (56) 
should possess a form identical to that describing the spatially homogeneous state. As 
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was shown in 93.5, the latter solution may be represented by the Maxwell-Boltzmann 
distribution function 

where vl = (u,  - u) [m/(e ,  
appearing in the right-hand side of (59c) was calculated in 9 3 . 5  (cf. (18), (51)): 

a, = wl[Z/(eo ar)I1/'. The zero-order sink term, 

I(')( f (O)) = K(F, I;) & z p g ( n )  (e,/m)3/2. (64) 

Now it is possible to calculate other contributions of f ( O )  to the Euler-like 
hydrodynamic equations. Similar to the classical Chapman-Enskog solution (Chap- 
man & Cowling 1970), the zero-order solution (63) yields zero heat diffusion flux and 
an isotropic stress tensor: 

P!?' 23 = 6.. 23 p ,  j ( 0 )  = 0. (65) 

The hydrostatic pressure P in a granular medium consists of a purely 'kinetic' part, 

(66 a-c) 

It is seen from (66c) that the effect of inelasticity of particle collisions is to decrease 
the collisional transfer pressure part (with respect to the case of elastic collisions) by 
the factor f ( 1  +e ) .  In addition, both inelasticity and roughness affect Pk and P, via the 
translational temperature q. 

Introduce solution (63) into (12) and use (58c) to obtain the first-order contribution 
off (O) to the kinetic energy dissipation 

Pk and a collisional transfer part, P,: 

P = Pk + P,, Pk = n q ,  P, = in( 1 + e )  g3n2g(n) q. 

I(1)Cf(O)) = N ( F )  p, v - u, (67) 

with 1 -p2 k+ar/at  N ( P ) = i ( l - e ) +  - 
( l + k ) (  l + e  ). 

This term is associated with energy losses arising from compression of the medium. 
Goldshtein et al. (1990) obtained (67) without specifying the ,&dependence of N(F) in 
(68).  

The first-order contribution of f(O) to the collisional integral (58d)  is obtained by 
introducing (63) into ( 5 3 )  and employing (58d) :  

- (m/e,)1/2 [H,,  V.u+H,,:VOu] , (69) I 
where the dimensionless vectors A,, B,, the traceless tensor H,, and the scalar-H,, are 
respectively defined by 

A1(F) = - d67, d 2 k j ( k .  V2,) k 
2 

3 (70b) 
F" F" 
e2/3'4 

'I 
B,(F) = - d67, d2kj (k .  V,,) k (Ti + di) F, +'- ( Fg2 + 8;.)] s 

FYF; 2k0V; 4 2k0V, {::} E b67,d'k&k.  v,,)[ e2P2at4  {-}+-{-}I, :k- V ;  at :k-  V ,  ( ~ O C ,  d )  
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with g(k- V,,) = 8(k- V,,)(k. V,,)/b and b = fn(1 +e). In the above, koV, is the 
traceless symmetric part of the dyadic k V,. 

Equations (66)-(71) describe the contribution of the zero-order function to (62), 
which is required in the hydrodynamic Euler-like equations. The solution of (62) will 
be obtained in the following subsection. 

4.3. The Euler-like hydrodynamic equations 
Introduce J(l)(f(O),f(’))  given by (69), (70a-d), and (65), (63) for Pi;), fO), f y ) ,  
respectively, into (62) to obtain the following equation for f ( l )  : 

where L&,) = (3 - v; - fi;). Comparing the left-hand side of this equation with the 
left-hand side of the corresponding equation obtained for absolutely elastic rough 
spheres (McCoy et al. 1966), one can see that the effects of e and ,8 manifest themselves 
in the appearance of an additional term, proportional to a In e l a x .  These collisional 
properties also affect the terms in the left-hand side of (71), including gradients of u and 
lne,. Goldshtein et al. (1990) formally obtained in (71) an additional term proportional 
to Vn. This, however, does not contradict the treatment presented here, since the 
difference between f(’) and the Maxwell-Boltzmann function (63) is negligibly small 
(see also the discussion in $3.5). 

The right-hand side of (71) consists of three linear operators applied tof‘l). The last 
one is the linearized collisional operator 

J(’)(f(’),f(l)) = g(n) d6r, d2kS(k - u,,) [(fy)”fP)” +f~’)”f~o’”) (e/3)-, 

- ( fy’ fF’  +fl“fp’)]. (72) 
s 

The first two terms in the right-hand side of (71) have no analogues in the models 
characterized by conservative collisions. The first of them results from the contribution 
of the source term I(l)Cf(l)). The second time-derivative term in the right-hand side of 
(71) may be shown to be determined by I(O)(f(O)), that is, by particle collisional energy 
losses. Towards this goal construct the solution for f ? )  as a most general linear 
combination of the spatial gradients of the hydrodynamic properties Q :  

1 +(:) ( D y V . u + E y :  VOU) , (73) 
112 

where A?), @:), CF), D y ) ,  E?) are functions of the dimensionless velocities V,, 52,. In 
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addition, these coefficient functions depend parametrically upon Q (but not on aga/ax), 
and upon the mechanical and geometric properties of granules and the interactions 
between them. Vector coefficients A('), B(l), C(l) contribute to the constitutive equation 
for the kinetic energy flux. This equation will include, in addition to the 'Fourier' term 
proportional to a In e,/ax, two other terms, respectively proportional to a In n/ax  and 

In P,/ax. Since in the two classical cases e = 1/31 = 1 these terms are absent (Chapman 
& Cowling 1970) their nature is governed by the particle collisional kinetic energy loss. 
Finally, the tensor coefficient E(l)  contributes to the viscosity, and the scalar 
determines the bulk viscosity of the granular medium. 

appearing in the right-hand side of (71) possesses the following form: 
Further it follows from (59)  and definition (60a) that the time-derivative term 

which explicitly includes the collisional sink term Z(O)(f(O)). 

divergence of the hydrodynamic velocity u : 
Using (73) and (59c), the term Z(l)( f ( l ) )  may be shown to be proportional to the 

with Djl) = D(')( V,, Q,), i = 1,2. This result is explained (Goldshtein et al. 1990) by the 
oddness of the functions A:), By),  Cy) (with respect to V,),  appearing in the right-hand 
side of (73). 

According to (69), (71), the last term in the right-hand side of (74) for af,fl"/at may 
be represented as a linear combination of a In n p x ,  a In P,/ax and a In e,/ax. Using the 
linearity property of the operator J(f(O), f (l)), defined by (72), and expression (75) for 
Z(')(f(l)) combined with (74), one can obtain from (71), a set of non-homogeneous 
integro-differential equations for the unknown functions B(l), C(l)D(l), E(l), and a 
homogeneous integro-differential equation governing A(1). Normalization conditions 
for these equations may be obtained by introducing solution (73) into (57). 
Approximate solutions for these equations may be obtained by traditional methods, 
e.g. by expansion in terms of Sonine polynomials. Equations for B(l), C(l), A(1), E(l) are 
necessary for constructing the higher-order hydrodynamic equations of the Navier- 
Stokes type. 

Calculation ofsink term I(l)(f(l)). We will limit ourselves by considering the equation 
for since this function governs the sink term Z(l)(f(l)), required for closure of the 
hydrodynamic Euler-like equations (59a-c). The solution for Dil) = D(')( K, Qi) 
possesses the form (see Appendix B) 

1 
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Coefficients a,,, a,,, a,,, a,, are calculated in Appendix B (see (B 12), (B 13a, b)). In 
the range of parameters /3 and e where the hydrodynamic solution exists, coefficients 
akt, a,, are monotonic, slowly varying functions of p and e (see figure 7). 

Introduce expressions (76a, b) for Djl) into (75) to obtain the following formula for 
source term P(f(l)) : 

P(f(1)) = (C, P, +A, p,) v - u, (77) 

where C, = a,, A, A, = a,, A, ( 7 8 4  b) 

Introduce expressions (65 a, b) for the pressure tensor and the diffusional part of the 
heat flux, and expressions (64), (67), (77) for sink terms into (59a-c) to obtain the Euler- 
like hydrodynamic equations of a medium consisting of inelastic rough spheres : 

(79 a-c) aP au 1 aeo P I(E)  -+V.(pu) = 0, -+u-Vu+-VP = 0, -+u-Ve,+-V.u = -, 
at at P at n n 

I (E)  = K(F,F)a2g(n)p(e, /m)3’2+(ClP,+C,P,)V.u,  (79 d )  

where C, = A, + N(F), (79 el 

and K(F,F), C,, A,, N(P)  are respectively given by (51) ,  (78a, b) and (68). 
These equations constitute the main goal of the present analysis. They can be used 

for mathematical description of a wavy motion of granular materials and, in particular, 
for modelling of particle motion in vibrofluidized beds (Goldshtein et al. 1993). 

For the model of rough inelastic spheres the expression for the zero-order sink term 
was obtained by Lun (1991). In the following section his result will be compared with 
the one obtained in the present study. Other sink terms for the collisional model 
employed here were not considered in the previous studies. 

5. Volumetric kinetic energy sink terms 
5.1. The sink term characterizing energy decay in a homogeneous state 

This term is represented by the first member in the right-hand side of (79c), with 
K(F, F )  given by (51) .  It describes the random motion energy losses within a granular 
medium flowing ‘incompressibly ’. 

Figure 2 depicts the dependence of the normalized value of the above sink term, 
represented by coefficient K(F, F) ,  upon the roughness /3 for several values of 
inelasticity e. These curves are drawn in the domain of existence of the hydrodynamic 
solution. For e > 0.6 (approximately) each of the curves possesses a well-established 
extremum point, whih falls into the above domain. This non-monotonic behaviour of 
K(F, F )  is explained by the ,&dependence of the energy losses resulting from particle 
collisions. When particles are almost smooth (‘J close to - 1) or almost absolutely 
rough (/I close to 1 )  the kinetic energy losses due to interparticle friction are small. 
Accordingly, for these particles all energy losses are associated with the inelasticity of 
collisions. However, at intermediate values of the roughness (p close to 0) the frictional 
part of the collisional energy losses reaches a maximum, resulting also in a maximum 
of the kinetic energy decay rate K(F, F) .  

Lun (1991) obtained the first member in the right-hand side of formula (79d)  with 
the coefficient K(F,F) in the form identical to (51) ,  although with wrong e- and /3- 



Mechanics of collisional motion of granular materials. Part I 101 

0 

-1.2 
- 1 .o -0.6 0.2 0.6 1 .o 

P 
FIGURE 2. The dependence of the normalized value of the sink term in the spatially uniform state of 
a granular medium (see (64)) upon the particle inelasticity e and roughness p for k = 0.4 (uniform 
spheres). Broken lines represent the solution with the energy partition function obtained by Lun 
(1991). 

dependences of the coefficients a,., at. Accordingly, the values of the normalized sink 
term K(F, F )  calculated by the theory of Lun (1991) differ significantly from the present 
results. A comparison presented in figure 2 shows that within the range of existence of 
the hydrodynamic solution the results of Lun (broken lines) overestimate the kinetic 
energy losses as much as by 50 YO. 

5.2. Sink terms characterizing energy losses arising from compression of granular 
medium 

(a)  The term Z(')( f (O)) = N(F)  P, V - u. The appearance of the velocity divergence in the 
above sink term suggests that it arises from the compression work performed by the 
pressure forces, i.e. by the collisional pressure P,. Although this interpretation seems to 
be supported by comparing (67) with the term PV-u appearing in the classical Euler 
equation (cf. also (79c)), the nature of the sink term (67) is different. The effect of this 
term is seen to diminish e, during gas compression, which, according to the above 
interpretation, would be equivalent to a negative compression work, which is 
impossible. To understand the origination of sink term (67), observe that V - u  is 
proportional to the rate of increase of gas density and, therefore, to the rate of increase 
of particle collisions. Each of these collisions is accompanied by kinetic energy losses. 
Therefore, N(F)  in (67) represents normalized kinetic energy loss (gain) due to increase 
(decrease) of particles' collision rate, arising from gas compression (expansion). 

Figure 3 depicts the dependence of the coefficient N(F),  governing the intensity of 
sink term (67), with irrelevant parts of the calculated curves (where the hydrodynamic 
solution does not exist) shown as broken lines. One can see that for elastic spheres 
(e  = 1) the kinetic energy losses predicted by (67), are relatively low ( N  is below 0.3). 
With increasing inelasticity (decreasing e)  the intensity of this sink term increases 
owing to increasing collisional losses. All curves possess maxima, which are located 
approximately at the same roughness coefficient p z 0.2. These maxima do not occur 
for the most dissipative particles, i.e. at /3 = 0, as one would expect, since the 
coefficients at, a? both depend on /3 (see (67)). 

Upon passing to the limit /3 = 1 in (68)  for N(F),  one obtains the expression N(F)  = 
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FIGURE 3. The dependence of the normalized value of the sink term arising from compression of a 
granular medium (see (67)) upon the particle inelasticity e and roughness ,8 for k = 0.4 (uniform 
spheres). For the applicability range of each curve see caption for figure 1. 

1.5( 1 - e) obtained by Jenkins & Richman (1985 a) for the particular case of smooth 
(p = - 1) particles. In the present model the latter limit cannot be achieved (except for 
the case e = 1;  see discussion of this matter in 53.5). 

One can see that (68) predicts quite a strong ,&dependence of the sink term I(')(f(O)) 
with respect to the form of this term obtained by Jenkins & Richman (1985~) .  For 
inelastic particles characterized by /3 z 0.2, disregarding this dependence can result in 
a several-fold error in calculation of I(l)(f(O)). Moreover, for elastic particles N(F) 
obtained by Jenkins & Richman (1 985 a) vanishes, whereas (68) predicts non-zero 
energy losses, except for the limiting cases /3 = f 1. 

(b) The term I ( l ) ( f ( l ) )  = (C,  Pk + A, 4) V . u. This sink term, appearing within the last 
member of the right-hand side of (79d), represents additional energy losses arising 
from compression of granular media. This term constitutes a new result, since it was 
not obtained in any previous studies of the collisional transport of granular materials. 

The term I(l)Cf(l))  consists of two parts respectively proportional to the kinetic and 
the collisional granular pressures. These pressures depend in a different manner upon 
the granular gas density, which determines the relative magnitudes of the two 
components of this sink term. However, coefficients C,, A,, are both proportional to A. 
The latter quantity, thus, determines an additional kinetic energy dissipation rate, 
associated with gas compression, and will be analysed below. 

To analyse this term we will rewrite (77) via the relaxational part 7p) of the bulk 
viscosity, given by (B 15c), thereby obtaining 

One can see from (80) that I ( ' ) ( f ( l ) )  is proportional to the product 7 p ) V - u  and, 
hence, is related to the kinetic energy relaxation phenomenon, governing also the value 
of the bulk viscosity term 7f) (see Appendix B). Coefficient A given by (79c) and 
appearing in (80) determines the influence of the energy relaxation upon the total 
energy balance in the system, and may be, thus, interpreted as a normalized value of 
the sink term I ( l ) ( f ( l ) ) .  
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FIGURE 4. The dependence of the correction factor h for the kinetic energy partition in the spatially 
uniform state of a granular medium, arising from relaxation phenomena (see (77), (78a, b)) upon the 
particle inelasticity e and roughness ,8 for k = 0.4 (uniform spheres). For the applicability range of 
each curves see caption for figure 1. 

Figure 4 shows the dependence of h upon p for several values of e in the range of 
existence the hydrodynamic solution (i.e. the range of monotonic dependence of 
parameters at, a, upon e,p). For e = 1 the effect of gas compression (Vsu < 0) is to 
pump additional kinetic energy into the random granular motion of the system, as seen 
in figure 4 ( A  > 0). One can see that in spite of the collisional energy losses associated 
with the particle roughness, the energy of the system is increased with respect to the 
case /3 = 1. To understand this phenomenon note that the partition of the kinetic 
energy of particle random motion between the rotational and translational modes 
given by (48a, b) was obtained for the homogeneous state. Formula (80), however, 
describes a non-homogeneous state of granular material, where the compression work 
is directly transmitted into the kinetic energy of random motion, primarily assoiated 
with particle translational degrees of freedom. Hence, in the presence of gas 
compression the kinetic energy partition law, given by (48a, b), is distorted. Therefore, 
the dissipation rate predicted by the K(F, F )  term of ( 5  1) (arising from the zero-order 
‘equilibrium ’ solution) differs from the dissipation rate prevailing during gas 
compression. The term P( f (l)), thus, constitutes a correction to the zero-order 
dissipation term given by (64). 

In the case e = 1 all kinetic energy losses are associated with the rotational motion, 
since the kinetic energy of particle translational motion is not lost during collisions. 
During gas compression rotational degrees of freedom possess less kinetic energy (than 
in the spatially uniform, ‘ equilibrium ’ case), and, hence, the corresponding collisional 
kinetic energy losses should be less. As such, for e = 1 the correction, given by the first- 
order source term I ( l )c f ( l ) )  is positive, i.e. describes kinetic energy gain. 

The source term I(”( f (l)) possesses a maximum value within the interval - 1 < p < 
1, corresponding to maximum collisional losses associated with the rotational motion 
(cf. similar disussion about K(F, P)). For lower values of inelasticity (e < 1) I ( l ) ( f ( l ) )  < 
0, i.e. predicts additional kinetic energy dissipation with respect to the ‘equilibrium’ 
dissipation rate given by (64). This is clearly attributed to the kinetic energy losses 
associated with the translational motion, which losses combine with those arising from 
particle friction. 
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Analyses show that for flows of dilute granular gases (n+O) the sink term 
P C f ( O ) )  - n2 while Z(l)(f(l)) - n, hence the former term is smaller. In dense granular 
gases Z(l)(f(l)) is important for particles undergoing inelastic collisions, but for elastic 
particles it is normally dominated by I(l)Cf(O)). Further analyses of the effects of both 
of these terms on the speed of sound in granular media are given in the following 
section. 

6. Propagation of waves within granular materials 
The goal of this section is to investigate the effects of particle collisional properties 

on the propagation of waves in granular gases. Savage (1988) considered acoustic 
waves, propagating with the speed of sound. Goldshtein et al. (1993) reported on the 
existence of waves propagating with a supersonic velocity. Mathematical modelling of 
these processes involve conditions for hydrodynamic properties on the front of the 
latter waves as well as the expression for the speed of sound in the granular gas. 

We will use the standard method of Courant & Friedrichs (1948) to rewrite (79a-c) 
in characteristic forms. Towards this goal consider the following characteristic 
ordinary differential equations : 

dx/dt = u+a, dx/dt = u-a, dx/dt = u. (8 1 a-c) 

The solutions of these equations may be respectively represented in the functional 
forms 

where constants C,, C-, C,, define three characteristic directions in the (x, t)-plane. In 

t+(x, 9 = c,, &, t) = c-, t*(x, 0 = c,, 

(81) 
a2 = Ttv(n)/m, (82 4 

with the function v given by 

and C,, C, are given by (78a), (79e). Referring to the three directions C,, C-, C,, one- 
dimensional versions of (79 a-c) may be rewritten in the following characteristic forms : 

- d P  du PZco)(fco)) - d P  du pz(o)(f(o)), (83 a, b) 
dt lc++apz l c+  = ne, ' dt l c - - a p & l c -  = ne, 

where the sink term Z(O)Cf(O),f(O)) is given by (64). 
The quantity a, given by (82a, b) and appearing in (81), (83) is the speed of 

propagation of 'infinitesimal' disturbances and, by analogy with the speed of sound, 
a,, in molecular gases, may be termed the speed of sound in granular media. In the 
limiting case e = IPI = 1 these two speeds are obviously identical, since in these 
circumstances (79a-c) reduce to the classical Euler equation of an inviscid gas, and 
(82a, b) yield the corresponding speed of sound in dense molecular gases (cf. Savage 
1988, equation (19)): 
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FIGURE 5. Speed of sound, a, in granular media. (a) Dilute granular gas (equation (85)); (b) granular 
gas with density p close to the maximum packing density, pM, A = 1 -p/p, 6 1 (equation (86)). 
Broken lines correspond to approximate expressions for a obtained by neglecting the kinetic energy 
sink terms (C, = 0 in (85) ,  C, = 0 in (86)). 

Limiting case 1. Dilute granular gas. Analyses show that in the case of dilute gas (i.e. 
P z Pk = nq), composed of rough inelastic spheres, (82a, b) jointly with (78a) yield 

(85) 
P 

a'= [l+fa,(l-C,)]-, 
P 

where C, is given by (78a). 
The expression in square brackets in the right-hand side of (85) is independent of 

density, although depends on the particle roughness and inelasticity. The effects of 
these parameters on the speed of sound in a dilute granular gas may be elucidated from 
the e- and P-dependences of a,, akt and A. Figure 5(a) depicts in a dimensionless form 
the comparable dependences of a2. Taking in (85) the limits of perfectly elastic smooth 
(a, = $, C, = 0) and rough (a, = g, C, = 0) spheres, one respectively obtains a = 

(4P/3p)lI2, (5P/3~)l '~ ,  with the first expression being the speed of sound in simple dilute 
molecular gases (Chapman & Cowling 1970). 

One can see that the speed of sound a decreases with increasing inelasticity of particle 
collisions. This is explained by noting that the kinetic energy losses (associated with gas 
compression) increase with decreasing e, which energy would otherwise contribute to 
the process of propagation of small disturbances within the granular medium. 

Setting C, = 0 in (85) one obtains a' = [l +fat] P/p, which directly follows from 
Savage (1988, equation (84)). Results of a computation using the latter formula, shown 
as broken curves in figure 5(a), demonstrate that the error in the speed of sound in 
dilute granular gas composed of inelastic particles (e = 0.6), stemming from 
disregarding the sink term P( f(l)) may amount to 12 %. 

Limiting case 2. Dense granular gas. When the gas density is close to the maximum 
packing density, pM i.e. A = 1 -p/pM < 1, one can write the equation of state for a 
simple gas consisting of elastic smooth spheres (Alder & Hoover, 1968) in the form 
P x P, = 3pM T/(rnd). Bearing in mind that the influence of the particle inelasticity on 
P,/Pk is given by the factor f(1 +e) (see (71)), one obtains the following approximation 
for the equation of state: 

3(1 +e) PzPp,=- 
24 pk' 



106 A .  Goldshtein and M. Shapiro 

where Pk z p M  T/m. The above, combined with (82~1, b) yields the following 
approximate expression for the speed of sound: 

Expression (86) shows that for a fixed pressure P the speed of sound increases 
indefinitely when the gas density approaches its maximum value ( A  + 0). The ratio 
a 2 p M A / P  is however independent of the state properties and is determined by the 
particle collisional parameters. This ratio is plotted in figure 5(b) together with its 
approximation obtained by disregarding the sink terms (setting C, = 0 in (86)), which 
directly follows from (85), obtained by Savage (1988). One can see that even in the case 
of elastic particles the effect of the energy dissipation on a2 amounts to 20% (at /3 = 
0.2). Moreover, for inelastic particles (e = 0.6) the error resulting from neglecting the 
sink terms (i.e. C, = 0) leads to overestimation of the speed of sound by more than 
350%. 

One can see from figure 5 (b) that the effects of particle collisional properties on the 
speed of sound in dense granular materials are marked by two competitive processes : 
(i) redistribution of particle random-motion kinetic energy between the rotational and 
translational modes and (ii) kinetic energy dissipation due to gas compression. For 
elastic particles the first process underlies an increase of a with decreasing /3, which 
leads to the concomitant increase of a up to the value ( 3 P l ~ A ) l ' ~  (at ,8 = - 1). However, 
kinetic energy losses rapidly increase with /3 decreasing from 1, which results in a 
diminution of a, which exhibits a minimum at about p = 0.6. For inelastic particles the 
energy dissipation process effectively dominates the /3-dependence of the speed of 
sound, causing its significant diminution with /3 decreasing from 1. 

We will, finally, derive the jump conditions for the hydrodynamic functions on the 
wave front. These conditions constitute an analogue of the Rankine-Hugoniot 
relations for the present Euler-like hydrodynamic mathematical model. For this 
purpose rewrite (10) in the one-dimensional form and use (66) and (79d)  for 
momentum and energy fluxes and the sink term, respectively: 

aP a a a 
-+-(pu) = 0, -(pu)+-(pu"P) = 0, 
at ax at ax 

a a 312 au 
at ax ax 
- (ne, + ipu') + - [nu(e, + :mu2) + UP] = C, azg(n) p @) + (C, PK + C, 4) - . (87 c)  

The standard method of Courant & Friedrichs (1948) for obtaining conditions on 
the shock wave may be directly applied to (87u-c). Noting that left-hand sides of these 
equations are explicitly independent of particle roughness and inelasticity, and that the 
terms not containing gradients of the hydrodynamic functions do not affect conditions 
on the shock front, one obtains 

[p(D - u)] = 0, [p(D - u), + PI = 0, ( 8 8 4  b) 

Here, D is the shock wave velocity, [q] = q+,-q-,, with q+, and q-, being the 
respective values of the hydrodynamic quantities before and after the discontinuity, 
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located in the point x. Using properties of the delta function in the right-hand side of 
(88), one can rewrite it in the form 

where {q} = +(q~+~ +qp0). 
It follows from (90) that the particle total kinetic energy is not continuous across the 

shock wave front (except for the case e = IpI = 1 ) .  Depending on the sign of the 
expression within the curly brackets in the right-hand side of (90), this energy may 
either increase (due to relaxation effects) or diminish (due to dissipation of mechanical 
energy into thermal energy). 

Equations (89) and (90) will be employed in analyses of wave propagation processes 
in vibrofluidized granular layers (Goldshtein et al. 1 9 9 4 ~ ) .  

7. Discussion 
The solution method developed in this paper may be compared with ad hoc solutions 

constructed by the moment methods (Jenkins & Richman 1985a, b ;  Lun 1991). In 
these methods the functional form for the singlet distribution function was adopted 
from the classical solutions of Grad (1949) and Chapman & Cowling (1970) 
independently of the particle collisional dissipative properties. This required the 
introduction of the restrictions of weak inelasticity (6, = 1 -e 4 1 )  and roughness 
(cP = 1 -1p1 < 1 ) .  Another restriction on the applicability of the hydrodynamic 
equations derived for fast shearing flows by the moment method is that the gradients 
of the hydrodynamic properties are small values of order c,, cP. 

Neither of the latter restrictions is required in the solution method employed here. 
In particular, the second restriction imposed on the gradients of the hydrodynamic 
properties is not necessary in the problem of wave propagation in granular media 
(Goldshtein et al. 1994b). 

The moment methods cannot be used for studying the influence of the kinetic energy 
dissipation on the structure of the hydrodynamic solution and the range of its 
applicability, which was done in this work. The difficulties characterizing the moment- 
method solution schemes increase for more complex approximations chosen for the 
singlet distribution function. Since in such schemes the expressions for the singlet 
distribution function (adopted from the classical solutions) do not contain terms 
proportional to a In n/ax  and a In P , / ~ x ,  appearance of these terms in the expression for 
the singlet distribution function should be guessed, rather than rigorously proven. 
Solutions of the latter kind were discussed by Jenkins & Richman ( 1 9 8 5 ~ )  and 
postulated by Lun et al. (1984), who guessed the appearance of the term a In n/ax  in 
the expression for the singlet distribution function. 

In particular, the moment methods are shown to be incapable of deriving the right 
forms and obtaining numerical values of the kinetic energy dissipation terms. Namely, 
they do not reproduce the term I(')( f (l)) given by (77) and fail to predict the effect of 
particle inelasticity on the energy partition law. The latter flaw results in overestimation 
of the zero-order kinetic energy losses by more than 50 %. Use of incorrect expressions 
for the first-order kinetic energy terms, obtained by the moment methods, lead to 
overestimation of the speed of sound in dense granular media composed of inelastic 
spheres by a factor exceeding 3. 

The difficulties characterizing the moment methods become still more obvious for 
more elaborated collisional models, e.g. when the particle collisional properties depend 
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upon the relative impact velocity. One can see from (18) obtained for these 
circumstances that even in the spatially homogeneous case the singlet distibution 
function depends upon e, in a complicated manner (via coefficients et = ci(m/e,)”2), 
and, hence, the lowest-order approximation offis no longer Maxwellian. The moment 
methods, however, are unable to yield these dependences (Lun & Savage 1986). 

The solution method developed here is free of the difficulties associated with the 
choice of the right form of the singlet distribution function. On the contrary, the 
functional form (73) for the singlet distribution function is rigorously and 
unambiguously dictated by (7 I), derived by the Chapman-Enskog method. The 
present method may be easily generalized to include the dependence of particle 
roughness and inelasticity upon the relative collisional velocity (see 93.1) and a non- 
spherical particle shape. The latter geometric factor may be included along the lines 
delineated by Theodosopulu & Dahler (1974), who considered ellipsoidal particles. In 
order to perform such an investigation, an appropriate modification of the collisional 
integral (3) is needed. 

This research was supported by the Technion V.P.R. Fund - Glasberg-Klein 
Research Fund. Fruitful discussions with V. Ya. Rudyak and A. I. Sokolovskii are 
gratefully acknowledged. 

Appendix A. Collisions of rough inelastic spheres 
Consider a configuration (x,, u,, 0,; x,, u,, w2)  of two spheres, respectively located at 

positions x, and x, and possessing the respective translational, u,, u2, and rotational, 
w,, w,, velocities. The configuration 

with u,, = u, - u, and the unit vector k = (x, - xl)/lx, - x,I directed from the centre of 
the second sphere to the centre of first sphere (see figure 6), describes their state just 
prior to the collision. At this moment the distance between their centres is equal to CT. 
The relative velocity of the particles at the contact point is 

(XI, ul,wl; x1- gk, u2, 02), k .  uZl > 0, 

g,, = (f12-&-kx U , ) - ( V 1 + $ C T k  O1) = g 2 1 k k + 8 2 1 7 ,  (A 1) 

where g 2 l k  = ( U Z l ’ k ) ,  g 2 1 7  = u 2 1 - k k ( u 2 1 * k ) - $ C T k  ( w l + o Z ) *  

According to the hypothesis of stereomechanic impact (Goldsmith 1960; Lun & 
Savage 1987), the postcollisional relative velocity gil depends on the precollisional 
velocity, g,, : 

where e = e(g,,,) and p = ~(gZlk,gzl7) are the respective coefficients of restitution and 
roughness. The dependences of e, /3 upon relative normal and tangential velocity 
components, g21k,g217 is assumed to be known. The laws of conservation of linear and 
angular momenta imply that 

CT 
u l - u ;  = J/m,  u, -u i  = -J/m, ol , -wl  = wi-w,  = - ( k x  21 J) ,  (A 3a, b) 

where J i s  the linear momentum transferred from the second particle to the first particle 
during the collision. It follows, thus, that the postcollisional particle state is derived by 

’; = u l + ~ l g 2 1 k k + 1 / 2 8 2 1 ~ ~  ‘’z = u Z - ~ l g 2 1 k k - ~ Z g 2 1 ~ ~  

m g  mv 
21 

w 1 - w  -_ 
1 - 1 21 T,(k x g 2 1 A  4 = 0, --%W x g 2 1 A  



where 
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FIGURE 6. Geometry of particle collisions. 

1 + e  
7, = 2, 7 2  = (z);. 

One can see from (A 4), that the total momentum of the colliding particles is 
conserved, but their total mechanical energy E diminishes by the amount AE: 

Since particle collisions are irreversible, equations of impact (A 4) are not invariant 
with respect to interchanging the roles of the primed and non-primed variable, i.e. the 
sequence of states is described by the following collisional event: 

k.U2, > O  

(x, u,, 0, ; x - ak, 02, w2) - (x, u;, 4, x - ak, 4, 03, (A 7) 

where the arrow indicates the direction of temporal evolution. 
Consider a precollisional state (x;, u;, w; ; xi  - uk, u i ,  03, which results in the 

postcollisional state (x,, u,, w1 ; x, - ak, u2, 0,). It is necessary, that x; = x,, k = - k 
(see figure 6) ,  i.e. the centre of the second particle is located at x l + a k  instead of at 
x - ak. The collisional event 

( k .  U;J > 0 

may be described similar to the event (A 7). Using collisional hypothesis (A 2) one 

(xl, u;, w;;  X, + ak, u;, mi) A (x,, u,, 0, ; x1 - ak, u2, w2)  (A 8) 

obtains 
gi,,, = -e”g211c”, gllT = -/3”gZl7, - 

where e“ = e(gillc”) = Z(gzlk), p” = P(gilk,,,giI7) = P(g21L,g21r). Employing the laws of 
conservation of particle momenta, one can rewrite the double-primed quantities : 
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where f l ,  f ,  may be obtained from (A 5 )  by replacing e,p,  by respectively p",e". In 
turn, dependences (A 10) may be obtained from (A 4) by replacing primed and 
double-primed variables, and also replacing v1,v2 by ql/e", f / p .  We will call the 
processes described by (A 4) and (A 10) the direct and the inverse particle collisions. 

Appendix B. Calculation of function D1) and bulk viscosity rb 

I(')( f ( I ) )  appearing in (79, as well as the bulk viscosity vb. 

appearing in (73) can be obtained in the form 

Here we evaluate DF) required in solution (73), and governing the source term 

Since the right-hand side of (71) is a linear operator, a particular solution for fF) 

where 

and where according to (63) 

In order to determine functions D,, D,  one must solve the 
equations : 

H,, F y )  +;a,[ 1 - N(F)]  L(Fy ' )  = Z(F(O', F'O'D C )  ) 

Fy'(gPf - 1) +$at L ( F r ) )  = Z(F"', F'O'D I c 7  ) 

where H,, and N ( F )  are given by ( 7 0 4  and (68), respectively, and 
determined for any pair functions F, G by the equations 

i3F aF 
L(F)  = 3F+ V27+Q2:. av a 0  

following integral 

(B 4) 

(B 5 )  

operators L, 2 are 

Z(F, G)  -L(F)[K(F,G)+K(G,F)]-J(F,G)-K(F,F)[iG+L(G)].  (B 7) 

In turn, operators J(F, G), K(F, F )  possess the form 

J(F, G) = d6pZ d2k(k- V2,) B(k- V2J [(Fy Gi  + F i  G;) (ep)-, - 4 G, - F, GI] ,  (B 8) s 
where 6 = F( Vf, Qi), Gi = G( Vi ,  Qf), i = 1,2, and 

G, Vil 

-_ (' - -'@) k i 2 p 4  G2(Qf+Q,2) i&, (B 9) 
12 l + k  

with d6pi = d3Fd3Qi, ( i  = 1,2), dl2p = d6pl d6pz. Note, that for G = F ( B  9) reproduces 
K(F, F )  given by (42). 
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Normalization conditions (57) for f (') yield subsidiary conditions for unknown 
functions D,, D,  : 

(B 10a) 

(B lob) 

Condiff et al. (1965) demonstrated rapid convergence rates of the Sonine polynomials 
expansions of functions like D, in the case of perfectly rough elastic spheres (e = ,I? = 

1). In particular, the lowest approximation for D,, including a linear combination of 
Sonine polynomials S$',( P;), Si)!&), provides quite an accurate estimate of the bulk 
viscosity r b .  Similarly to the case e = ,I? = 1, we will use the approximation 

Dki = a,,S$',(t:)+a,,S,,,( (1) 6 2  0, D , ~  = a , , ~ i ) ' , ( P : ) + a , , ~ ~ ~ ( B : ) ,  i = 1,2 
(B 11) 

also for a more general collisional model (0 < e < 1, - 1 < ,I? < 1) employed here. One 
can obtain from (B lo), (B 11) conditions relating parameters akt and a,,, a,, and acr 
with a,, a,: 

(B 12) 

Two additional conditions for determination of akt, akr, a,,, acr may be obtained from 
(B 4), (B 5 )  and (B 11) by employing the moment method. As a result, one obtains the 
expressions 

' k t  = x k / x ,  act = x c / x ,  (B 13a, b) 
with 

a, a,, +a, a,, = 0, a, a,, +a, a,, = 0. 
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x = @) {$(l-e2)a,0at-a,)f (:Lf) - $[(3k - 3) at a, + a; - ka3 

x, = -$atar[l-N(F)]+--- (B 13d, e)  

where vZ, a,, a, and N(F)  are given by (A 5) ,  (48a, b) and (68) respectively. 
Now it is possible to evaluate the first-order contribution to the deviatoric part P, of 

the pressure tensor P. After substituting expressions forfy) and f Ek, respectively given 
by (63) and (B 1)  into expansion (63a) for P, one can evaluate P, in the form 

with S the identity tensor. 

to consist of two parts - y r )  and Y,$) : 

Pd = ( P - - b v . u ) S ,  (B 14) 

Similar to the case of perfectly elastic rough spheres, bulk viscosity rb may be shown 

(B 15a, 6) 

(B 15c) 

where the ratio FJP, is a n-dependent function. 
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FIGURE 7. Coefficients characterizing the relaxational part of the bulk viscosity us. particle roughness : 
a,.., solid lines; a,,, broken lines. For the applicability range of each curve see caption for figure 1. 

In the limit e, /3+ 1 expressions (48a, b) for a,, a, and expressions (B 13) for akt, a,, 
respectively reduce to 

(k+ 1)Z 2 1’2 

3, akt = a,, = -___ 
32k (&) ’ 

a, = a, = a = 

Formulae (B 15) reproduce the result of McCoy et al. (1966) for the bulk viscosity of 
perfectly elastic, perfectly rough dense sphere gas (e = p = 1). 

The terms 79) and Y,$) govern different physical processes occurring in a compressing 
(expanding) gas. 79) describes the dense gas effect, i.e. the collisional contribution of 
particles possessing finite dimensions into linear momentum transfer. Equation 
(B 15 c) describes the contribution of the relaxation processes (i.e. exchange of kinetic 
energy between the rotational and the translational modes) occurring during gas 
expansion/compression into the pressure tensor (see discussion in $4.2). 

For absolutely elastic collisions (e = 1) one can obtain from (B 13c-e) that a,, = act. 
In this case akt may be interpreted as a normalized ‘relaxational’ viscosity 7P). 
Parameters akt = a,, are plotted in figure 7 us. particle roughness (curve e = 1). This 
figure also shows the values akt, a,, in a more general case, where e $; 1. One can see 
that the difference akt-u,,  is not large for e d 0.8 (does not exceed 10%). Hence for 
‘almost elastic collisions’ (1 < e < 0.8) each of these coefficient may still be interpreted 
as a normalized relaxational part of the bulk viscosity. Bearing in mind this 
interpretation, one can see that the bulk viscosity of slightly inelastic spheres increases 
with decreasing /3. This may be explained by the fact that with decreasing roughness 
the exchange between the rotational and translational kinetic energies becomes less 
efficient, which results in intensification of the relaxation process, accompanied by the 
concomitant growth of 7P). 

In view of the limitation of the collisional model employed here, the curves shown 
in figure 7 may be used in the range of e ,P described by inequality e > em@). 

Special consideration should be given to the case of absolutely smooth elastic 
spheres (e = 1,p = - 1) for which both coefficients akt, a,,, as well as x ~ , x ~ , x ,  
appearing in (B 13 c-e) vanish, and, hence, bulk viscosity of this granular gas does not 
exist. 
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Approach to this limit is described by considering the case of slightly inelastic 
(1 - e = e, 4 l) ,  slightly rough (1 + ,8 = E ,  6 1) spheres with e,, E ,  + 0. Then, (B 13 a-e) 
may be reduced to 

(B 17) 
2kcF 

= 3(1+k)2(e,k,-e,)’ akt = a,, w --, 
X 

where k, = (1  - k ) / (  1 + k).  Coefficients a,, x both vanish at the point e, = c, = 0 ; hence, 
the bulk viscosity in this case may not be determined (see 94.3). 

The singular limit e+ 1, p+- 1 is characterized by an indefinite increase of the 
relaxation time and a simultaneous decrease of the kinetic energy transferred between 
the translational and rotational modes. As a result of the above competing tendencies, 
the value of the function 7;) in the point e = 1, p = - 1 depends upon the specific path 
at which this limit is approached in the (e,B)-plane. 
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